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Abstract

We present a conceptually simple framework for 6DoF

object pose estimation, especially for autonomous driving

scenario. Our approach efficiently detects traffic partic-

ipants in a monocular RGB image while simultaneously

regressing their 3D translation and rotation vectors. The

method, called 6D-VNet, extends Mask R-CNN by adding

customised heads for predicting vehicle’s finer class, ro-

tation and translation. The proposed 6D-VNet is trained

end-to-end compared to previous methods. Furthermore,

we show that the inclusion of translational regression in

the joint losses is crucial for the 6DoF pose estimation

task, where object translation distance along longitudinal

axis varies significantly, e.g., in autonomous driving sce-

narios. Additionally, we incorporate the mutual informa-

tion between traffic participants via a modified non-local

block. As opposed to the original non-local block imple-

mentation, the proposed weighting modification takes the

spatial neighbouring information into consideration whilst

counteracting the effect of extreme gradient values. Our

6D-VNet reaches the 1 st place in ApolloScape challenge

3D Car Instance task1 [21]. Code has been made available

at: https://github.com/stevenwudi/6DVNET.

1. Introduction

For self-driving cars, it is important to detect surround-

ing vehicles, pedestrians, riders, etc. The system must un-

derstand the 3D relationships between traffic participants in

its field of view. One of the crucial components is to detect,

estimate and reconstruct the 3D shape of vehicles in a given

video (Fig. 1).

Current state-of-the-art RGB-based 6DoF pose estima-

tion systems [32, 6, 22] are two-staged: the first stage is to

detect the object with 3D rotation via a trained network, and

the second stage is to estimate the full 3D translation via

projective distance estimation. The aforementioned two-

1http://apolloscape.auto/car instance.html

Figure 1: 6D-VNet is trained end-to-end to estimate vehicles’ six

degree of freedom poses from a single monocular image. The out-

put will precisely estimates the vehicle’s voxels in 3D occupancy.

staged systems primarily focus on the industry-relevant bin-

picking tasks. Typically, a robot needs to grasp a single ar-

bitrary instance of the required object, e.g., a component

such as a bolt or nut, and operate with it. In such scenario,

the surface alignment in the Z dimension, i.e., the optical

axis of the camera, is less important than the alignment in

the X and Y dimensions. Such industrial setting requires

accurate estimation of rotation, whereas the translation tol-

erance can be relaxed. However, in autonomous driving,

translation distance of traffic participants along longitudi-

nal axis varies significantly. Consequently, the translation

estimation is more challenging. In the meanwhile, the esti-

mation of vehicle’s translation is more critical than that of

orientation.

Traditional methods leave the translational estimation as

a separate procedure after the object class prediction and

rotation estimation by using a geometric projection method.

However, the geometric projection method assumes that: (i)

the object centre in 3D will be projected to the object bound-

ing box centre in the 2D image; (ii) the predicted object

class and rotation vector is correctly estimated. Therefore,
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by using geometric projection as the post-processing step,

the error from object class estimation and rotation regres-

sion will be aggregated in the following projective distance

estimation.

To accommodate the requirement for accurate transla-

tion estimation in autonomous driving, we propose a frame-

work, called 6D-VNet, aiming at regressing the vehicle’s

rotation and translation simultaneously (Fig. 2). 6D-VNet

streamlines the vehicle’s 6DoF via the intermediate outputs

from the Region Proposal Network (RPN) [10]. The detec-

tion part of the network is the canonical 2D object detec-

tion network (Mask R-CNN). The 6DoF estimation part of

the network takes the intermediate output from the detec-

tion head. The challenging aspect of learning 6DoF vehicle

pose is to design a loss function which is able to learn both

rotation and translation. The model learns a complementary

representation when supervised by both translation and ori-

entation signals. Moreover, traffic participants exert mutual

influence among their neighbours. Therefore, we introduce

a weighted non-local block, which is a modified version of

[41], to capture the collective information between traffic

participants with interpretable self-attention map.

Specifically, the network is trained end-to-end by joint

losses designed with solid geometric ground. Experimen-

tal results show that the proposed method outperforms the

state-of-the-art two-staged systems. We list our contribu-

tions as follows:

• To our best knowledge, this is the first work which suc-

cessfully regresses the rotation and translation simul-

taneously for deep learning-based object 6DoF pose

estimation. And we showcase the effectiveness of

the translation head inclusion into end-to-end training

scheme (Sec. 3.1).

• With a grounding in geometry, we investigate several

joint losses that function synergistically (Sec. 3.2).

• We capture the densely spatial dependencies by in-

troducing a weighted non-local operation with inter-

pretable self-attention map (Sec. 3.3).

2. Related Work

Monocular-based 3D object detection were helped by

early work on face detection [39] to popularise bounding

box object detection. Later, pedestrian detection [7], PAS-

CAL VOC [8], MS-COCO [29] pushed the detection to-

wards a more diverse, challenging task. Detectron [11] is

based on a line of works [27, 14, 41, 12, 28, 20, 31, 13, 43]

to enable extensive research projects based on 2D object de-

tection. KITTI dataset [9] propelled the research for traffic

participants under autonomous driving scenario. However,

the 3D object detection task in the KITTI dataset primar-

ily focuses on using point clouds data from Velodyne laser

scanner, which is an expensive apparatus. In addition, the

KITTI 3D object detection task only has half degree of free-

Figure 2: The core component of the proposed network: follow-

ing the detection head in 2D space, the 6D-VNet regresses the

6DoF rotation and translation vector simultaneously in 3D space.

dom for rotation overlooking vehicle’s heading direction.

Camera pose estimation is the problem of localisation,

that is, to infer where you are, and is crucial for mobile

robotics, navigation and augmented reality. PoseNet [25]

trains a convolutional neural network to regress the 6DoF

camera pose from a single RGB image in an end-to-end

manner with no need of additional engineering or graph

optimisation. A more fundamental theoretical treatment is

given in [24] by exploring a number of loss functions based

on geometry and scene reprojection error. [40] proposes

a unified framework to tackle self-localisation and camera

pose estimation simultaneously. The problem of camera

pose estimation is egocentric, in other words, a single vector

of 6 dimensions will suffice to relocalise the camera pose.

6DoF object detection is essential for mobile robotic ma-

nipulation and augmented reality. The BOP benchmark [18]

comprises of eight datasets in a unified format that cover

different practical scenarios and shows that methods based

on point-pair features [38] currently outperform methods

based on template matching [19], learning-based [2, 3, 33,

23] and 3D local features [5]. There are very encouraging

recent results [22, 17, 42, 38, 15, 32, 6, 34] using either

RGB or RGB-D images for detecting 3D model instances

and estimating their 6DoF poses. A two-staged 6DoF object

detection pipeline is proposed in [32]: firstly, a Single Shot

Multibox Detector (SSD) [30] is applied to provide object

bounding boxes and identifiers. Then an Augmented Au-

toencoder (AAE) is applied to estimate the object rotation

using a Domain Randomisation [35] Strategy. However, the

aforementioned methods focused on the industry-relevant

objects with neither significant texture nor discriminative

colour or reflectance properties. Moreover, objects of inter-

ests are lying on a uniform ground plane (e.g., in T-LESS

dataset [17], the range of object distance is from 650mm to

940mm). Hence, the tolerance of rotation needs to stay low,

whereas translation can be relaxed.
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Figure 3: System pipeline: 6D-VNet takes a monocular image as input and performs the vehicles’ 6DoF estimation. The grey box

represents a canonical instance segmentation network and the dark blue branch is for estimating object 6DoF pose and its sub-category.

3. Model

6D-VNet is conceptually intuitive and structurally hered-

itary: Faster R-CNN has two outputs for each candidate

object, a class label and a bounding-box offset, Mask R-

CNN adds a third branch that outputs the object mask. Like-

wise, 6D-VNet streamlines the objects 6DoF prediction via

the intermediate outputs from the Region Proposal Network

(RPN). However, in order not to break already learnt func-

tionality of the pre-trained network, careful design choices

must be customised for the end-to-end training. Next, we

present the overall architecture in Sec. 3.1. Particularly, we

introduce the end-to-end training paradigm with translation

estimation integration which greatly outperforms other two

staged frameworks in terms of translation estimation accu-

racy. The design choices for the joint losses are presented

in Sec. 3.2. Lastly we show the spatial relationship be-

tween traffic participants can be incorporated via a modified

weighted non-local block in Sec. 3.3.

3.1. Network Architecture

6D-VNet is built upon the canonical object detection net-

work as shown in Fig. 3. The system is a two-staged net-

work trained end-to-end to estimate the 6DoF pose infor-

mation for object of interest. The first stage of the network

is a typical 2D object detection network (Mask R-CNN).

The second stage of the network is the customised heads to

estimate the object 6DoF pose information.

The 6DoF pose estimation branch is the novelty of the

model and is split into two parts: the first part only takes

RoIAlign [14] from each candidate box if the candidate is

of the vehicle class and performs sub-class categorisation

and rotation estimation. Due to in-plane rotation is unique

for a given vehicle class, all vehicles share similar rotational

features for the same yaw, pitch, and roll angles. Therefore,

the fixed-size visual cue from RoIAlign layer is sufficient

for estimating the candidate sub-category and rotation.

The second part takes both RoIAlign feature and bound-

ing box information (in world unit as described in Sec. 3.2)

via a concatenation operation to estimate the 3 dimensional

translational vector. To our knowledge, this novel formula-

tion is the first of its kind to regress the translational vector

directly. The joint feature combination scheme implicitly

encodes the object class and rotation information via the

concatenation operation (⊕ in Fig. 3). The translation re-

gression head functions in synergy when it is combined with

the joint loss from sub-category classification and quater-

nion regression. We show in the experiment that our novel

formulation for translation regression produces much more

accurate position estimation comparing to the methods that

treat the translation estimation as a post-processing step.

This accurate estimation of translational vector is particu-

larly crucial for the applications where the distance of the

objects are of primary importance (e.g., in the autonomous

driving scenario).

3.2. Joint Losses

We minimise the following loss L to train our network

in an end-to-end fashion: L = Ldet + Linst, where Ldet

denotes the multi-task loss as in a canonical detection net-

work: Ldet = Lcls+Lbox+Lmask. The classification loss

Lcls, 2D bounding box loss Lbox and 2D mask loss Lmask

are identical as those defined in [14]. In order to accelerate

the network training and keep the functionality of the pre-

trained multi-task module (e.g., mask head for instance seg-

mentation), we can freeze these heads and their correspond-
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ing child nodes, i.e., the convolutional backbone and set the

Ldet to zero during back propagation phase. Linst denotes

the individual instance loss for 6DoF estimation with sub-

class categorisation. Specifically, it is defined as a triple-

loss: Linst = λsub clsLsub cls + λrotLrot + λtransLtrans,

where λsub cls, λrot, λtrans are hyper-parameters used to

balance their corresponding loss. Next we explain the de-

sign choices for the above triple losses.

Sub-category classification loss Lsub cls. Sub-category

denotes the finer class of the vehicle corpus: e.g., Audi-A6,

BMW-530, Benze-ML500, etc. In order to balance the rare

cases for infrequently appearing cars in the training images,

weighted cross entropy is used for sub-category classifica-

tion loss.

Rotation loss Lrot. There are generally three representa-

tions for providing orientation information: Euler angles,

SO(3) rotation matrices and Quaternions. Euler angles are

easily understandable and interpretable parametrisation of

3D rotation. However, there are two issues when directly

regressing the Euler angles: (1) non-injectivity: the same

angle could be represented by multiple values due to the

wrapping around 2π radians, which make the regression a

non uni-modal task; (2) Gimbal lock: possible loss of one

degree of freedom does not make Euler angles invalid but

makes them unsuited for practical applications. Given 3D

models of the objects, one way to work around the problem

is to rotate each view at fixed intervals to cover the whole

SO(3) and then find the nearest neighbour [32] or closest

viewpoint [22], which treat the rotation estimation problem

as a classification problem. But this requires a complete

CAD model of the object and a discretisation step of ori-

entation angles. To estimate rotation matrix directly, [6]

propose a LieNet to regress a Lie algebra based on rota-

tion representation. However, a 3 × 3 orthogonal matrix is

over-parameterised and enforcing the orthogonality is non-

trivial.

Quaternions are favourable due to the universality map-

ping from 4 dimensional values to legitimate rotations. This

is a simpler process than the orthonormalisation of rotation

matrices. Quaternions are continuous and smooth, lying in

a unit manifold, which can be easily enforced through back-

propagation. Therefore, the rotation head in our network fo-

cuses on the regression of quaternion representation. How-

ever, the main problem with quaternions is that they are not

injective: the quaternion q and −q represent the same ro-

tation because two unique values (from each hemisphere)

map to a single rotation. To address the issue, we constrain

all quaternions to one hemisphere such that there is a unique

value for each rotation 2. Hence, for the rotation head, given

the ground truth unique quaternion q and the predicted q̂,

2We enforce the uniqueness as in Appendix.

the rotation loss is defined as:

Lrot(q, q̂) = ‖q − q̂

‖q̂‖‖γ (1)

An important choice for regressing in Euclidean space is

the regression norm ‖‖γ . Typically, deep learning models

use L1 = ‖‖1 or L2 = ‖‖2. With the datasets used in

this paper, we found the L1 norm performs better: the error

does not increase quadratically with magnitude nor over-

attenuate large residuals.

Translation loss Ltrans. Regressing translation vector in

world unit instead of pixel unit stabilises the loss. The trans-

formation of the detected object takes 2D bounding box

centre, height and width up, vp, hp, wp in pixel space and

then outputs their corresponding uw, vw, hw, ww in world

unit as:

uw =
(up − cx)zs

fx
, vw =

(vp − cx)zs
fy

, hw =
hp

fx
, ww =

wp

fy

where the matrix [fx, 0, cx; 0, fy, cy; 0, 0, 1] is the camera

intrinsic calibration matrix.

Huber loss is adopted to describe the penalty in transla-

tion estimation: give ground truth 3 dimensional translation

vector t and the prediction t̂, the translation loss is:

Ltrans(t, t̂) =

{

1
2 (t − t̂)2/δ if |t − t̂| < δ,

|t − t̂| − 1
2δ otherwise.

(2)

where the hyperparamter δ controls the boundary of out-

liers. If δ is set to 1, then it becomes the smooth-L1 loss

used in [10]. In this paper, δ is set as 2.8 which is the

cut off threshold for translational evaluation as described

in Sec. 4.1.

3.3. Weighted Non­local neighbour embedding

In order to capture spatial dependencies among detected

objects of interest, we introduce a non-local block with

a weighted operation. We reason that the dependencies

among neighbouring objects will assist the network to reg-

ularise the 6DoF pose estimation collectively better than

treating them individually. For example, neighbouring cars

on the same lane will follow almost the same orientation and

maintain certain distance. There are several advantages of

using a weighted non-local operations comparing with other

social embedding schemes [37, 1]: (i) non-local operations

capture long-range dependencies directly by computing in-

teractions between any two positions, regardless of their

positional distance; (ii) non-local operations maintain the

variable input sizes and can be easily combined with other

operations; (iii) our proposed weighted operation renders

it possible to associate the output maps with self-attention

mechanisms for better interpretability.
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The non-local means (NL-means) is first introduced

in [4], based on a non-local averaging of all pixels in the

image. Later [41] introduced the non-local operations as an

efficient and generic component for capturing long-range

dependencies with deep neural networks. The non-local

operations maintain the variable input sizes. Intuitively, a

non-local operation computed the response at a position as

a weighted sum of the features at all positions in the input

feature maps. The generic non-local operation in deep neu-

ral network is defined as:

yi =
1

C(x)
∑

∀j

f(xi, xj)g(xj) (3)

where i is the index of an output position (here in space)

whose response is to be computed and j is the index that

enumerates all possible positions. x is the input signal

and y is the output signal of the same size as x. A pair-

wise function f computes a scalar (representing relation-

ship such as affinity) between i and j. The unary func-

tion g computes a representation of the input signal at

the position j. The response is normalised by a factor

C(x). The non-local models are not sensitive to the de-

sign choices of f and g. For simplicity and fast compu-

tation, we consider g in the form of a linear embedding:

g(xj) = Wgxj , where Wg is a weight matrix to be learnt.

The pairwise function f is implemented in the form of

embedding Gaussian as: f(xi, xj) = eθ(xi)
Tφ(xj), where

θ(xi) = Wθxi and φ(xj) = Wφxj are two embeddings.

And C(x) =
∑

∀j f(xi, xj). The recently proposed self-

attention module [36] is a special case of non-local opera-

tions in the embedding Gaussian version: when, for a given

i, 1
C(x)

∑

f(xi, xj) becomes softmax computation along the

dimension j. So we have y = softmax(xTWT
θ Wφx)g(x).

However, we found out that when the input dimension d
(for a feature map of H × W × C where C is the channel

number, d = H × W ) gets large, the dot products grow

large in magnitude, pushing the softmax function into re-

gions where it has extreme gradients. As a result, y will

have extreme value as well.3 To counteract the effect, we

propose to use a weighted non-local operation for calculat-

ing the self-attention map A as:

A = softmax(
xTWT

θ Wφx√
d

) (4)

So that y = A · g(x). The weighted non-local operation

scales the dot-product attention variance to unit 1, which

consequently does not push the softmax operation to ex-

treme, saturated values. Similar technique is also adopted

3To illustrate why the dot products get large, assume that the compo-

nents of x are random variables with mean 0 and variance 1. Then its self

dot product, xT · x =

∑d
i x

2

i , has mean 0 and variance d (d is the input

dimension).

in [16], where temperature of the final softmax is raised so

as to obtain soft targets. Intuitively, the weighted operation

has the same form of expression. However, the suitable tem-

perature in softmax is finicky to determine. Alternatively,

we scale the dot-product input variance to unit 1. Conse-

quently, the output map after softmax operation will provide

a justifiable interpretation in the form of a self-attention for-

mulation.

4. Experiments on Apolloscape Dataset

We perform comprehensive studies on the challenging

Apolloscape dataset. The Apolloscape 3D Car Instance

challenge contains a diverse set of stereo video sequences

recorded in the street scenes from different cities. There are

3941/208/1041 high quality annotated images in the train-

ing/validation/test set.4 The monocular RGB images are

of pixel size 2710 × 3384. It is worth noticing the high

resolution of the images: the total number of pixels of a

single image is 100 times than those of other canonical im-

age datasets (e.g., MS-COCO, Mapillary Vistas, ImageNet).

The camera intrinsic parameters are provided in the form of

camera focal lengths (fx, fy) and optical centres expressed

in pixels coordinates (cx, cy). Car models are provided in

the form of triangle meshes. The mesh models have around

4000 vertices and 5000 triangle faces. One example mesh

model is shown as in Fig. 2. There are total 79 car models

in three categories (sedan1, sedan2, SUV) with only 34 car

models appearing in the training set. In addition, ignored

marks are provided as unlabelled regions and we only use

the ignored masks to filter out detected regions during test.

4.1. Evaluation Metrics

The evaluation metrics follow similar instance mean AP

as the MS-COCO [29]. However, due to 3D nature, the 3D

car instance evaluation has its own idiosyncrasies: instead

of using 2D mask IoU to judge a true positive, the 3D metric

used in this dataset contains the perspective of shape (s),
3D translation (t) and 3D rotation (r). The shape similarity

score is provided by an Ncar ∗ Ncar matrix where Ncar

denotes the number of car models. For 3D translation and

3D rotation, the Euclidean distance and arccos distance are

used for measuring the position and orientation difference

respectively.

Specifically, given an estimated 3D car model in an

image Ci = {si, ti, ri} and ground truth model C∗
i =

{s∗i , t∗i , r∗i }, the evaluation for these three estimates are

as follows: for 3D shape, reprojection similarity is con-

sidered by putting the model at a fix location and ren-

dering 10 views (v) by rotating the object. Mean IoU

is computed between the two poses (P ) rendered from

4After manual examination, we have deleted visually distinguishable

wrongly labelled images, leaving us with 3888/206 images for train-

ing/validation.
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each view. Formally, the metric is defined as: cshape =
1

|V |

∑

v∈V IoU(P (si), P (s∗i ))v , where V is a set of cam-

era views. For 3D translation and rotation, the evalua-

tion metric follows that of the canonical self-localisation:

ctrans =‖ ti − t∗i ‖2 and crot = arccos(|q(ri) � q(r∗i )|).
Then, a set of 10 thresholds from loose criterion to strict

criterion (c0, c1, . . . , c9) is defined as:

shapeThrs− [.5 : .05 : .95]

rotThrs− [50 : 5 : 5]

transThrs− [2.8 : .3 : 0.1]

where the most loose metric c0: 0.5, 50, 2.8 means shape

similarity > 0.5, rotation distance < 50◦ and translation

distance < 2.8 metres, and stricter metrics can be inter-

preted correspondingly: all three criterion must be satisfied

simultaneously so as to be counted as a true positive.

It is worth noting the strict translation distance thresh-

old of 2.8 metres: it requires that the detected vehicle’s dis-

tance from the camera centre needs to be correctly estimated

within a 2.8 metres threshold even if the vehicle is hundreds

metres away from the camera, otherwise the detection will

be counted as a false positive. The precise translational es-

timation requirement is the major factor for the network to

produce incorrect false positive, which is a challenging task

from a human perspective as well.

4.2. Implementation Details

ResNet-101 is adopted as the convolutional body with

Feature Pyramid Networks (FPN) as the detection back-

bone. The instance segmentation head is pre-trained using

the Apolloscape scene dataset5 with “car, motorcycle, bicy-

cle, pedestrian, truck, bus, and tricycle” as 8 instance-level

annotations.

The hyperparameters λsub cls, λrot, λtrans in Eqn. 3.2

are set to 1.0, 1.0, 0.1 to scale the loss accordingly. To

decrease the translational outlier penalty and stabilise the

network training, the hyperparameter δ in Eqn.3.2 is set to

2.8 metres as the loose end of the translational metric in

Sec. 4.1. The base learning rate starts from 0.01 with warm

start-up scheme and the models are trained up to 5 × 104

iterations with learning rate divided by 10 at 1.5 × 104th
and 3× 104th iterations. We use a weight decay of 0.0001

and a momentum of 0.9. The RoIAlign takes a feature map

of 7 × 7 from each RoI. The weighted non-local block is

plugged into the last layer (5th) of the convolutional body

with a receptive field of 32×32. During training, the images

are resized with the largest side randomly in [2000, 2300].

Due to memory limitation, batch size is set as one image per

single GPU. The incorporation of non-local block will in-

crease the memory requirement, hence the training images

are resized with the largest side randomly in [1500, 2000]

5http://apolloscape.auto/scene.html

AP AP50 AP75 APS APM APL APXL

Single Scale 0.57 0.87 0.62 0.34 0.50 0.65 0.73

Multiple Scale 0.59 0.89 0.64 0.34 0.51 0.68 0.84

Table 1: 2D bounding box detection mAP from the Faster R-CNN

head. It is the upperbound for 3D detection result. Subscripts of

AP represent squared object one side size in pixels as: S:28-56,

M:56-112, L: 112-512, XL:512+.

when non-local block is plugged in. Top 1000 regions are

chosen as per FPN level with 100 batch size per image. Dur-

ing testing phase, 0.1 is chosen as the detection threshold in

the Faster R-CNN head with multi-scale augmentation.

4.3. Main Results & Ablation Studies

We present results of 6D-VNet that reaches the 1st place

in Apolloscape challenge 3D Car Instance task. Further-

more, we perform comprehensive evaluations to analyse the

“bells and whistles” in 6D-VNet, which further improve

state-of-the-art (Tab. 4). Our ablation studies gradually in-

corporated all components and are detailed as follows.

Effect of End-to-End Training. We first provide the 2D

bounding box mAP from Faster R-CNN head to serve as

the upper bound by 2D object detection as in Tab. 1. We

can find that small objects are more challenging to detect.

Small object also indicates the object longitudinal axis dis-

tance is typically far away from the camera. The accurate

estimation of large translational distance value is thus more

challenging.

In Tab. 2 we show that the translational head is crucial

for improving the mAP in our end-to-end training scheme.

The projective distance estimation was the defacto approach

in previous state-of-the-art methods [32, 22, 6] as a sec-

ond stage to measure the translational distance. The depth

component estimation is treated as an entirely indepen-

dent process given the rotation pose estimation 6. Hence,

the geometric post-processing method achieves around only

3.8%mAP due to the crude translation estimation. We show

that using the same bounding box information (in world

unit) to train a translation regression head improves the

mAP to 8.8%.

Effect of Joint Losses. We then investigate the synergistic

training of using visual information to regress translational

vector as the concatenation operation ⊕ in Fig. 3. The w/o

⊕ row in Tab. 2 represents the translation head using only

normalised world unit bounding box information, the ⊕ row

represents the translation head that combines the interme-

diate visual information from RoIAlign with the bounding

box information. The overall mAP is further improved by

2% using the RoIAlign intermediate feature. It is worth not-

ing the synergy of the joint losses reflecting through the

6See Appendix for a more detailed description for projective distance

estimation.
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Method Intermediate training value val mAP test mAP

shape sim rot dist trans dist

projective distance 0.84 13.5◦ - 0.038 0.0371

w/o ⊕ 0.86 11.9◦ 4.6 0.088 0.0882

⊕ 0.87 10.5◦ 2.3 0.108 0.1049

⊕ (fine-tune) 0.90 8.8◦ 1.3 0.128 0.1223

Table 2: Effect of end-to-end training and joint losses. The projective distance is the most commonly adopted approach in previous

state-of-the-art methods [32, 22, 6] as a second stage to measure the translational distance. w/o ⊕ denotes the network without the

concatenation operation in Fig. 3. ⊕ represents the branch trained with joint losses. ⊕ (fine-tune) denotes, when training the network, the

learnt parameters in convolutional body and Faster R-CNN head are unfreezed.

Method Inference Time (second) val mAP test mAP

Det Head Triple Head Misc Total

w/o Weighted Non-local (Single Scale) 0.966 1.322 0.002 2.40 0.128 0.1223

w/o Weighted Non-local (Multi-Scale) 5.535 1.381 0.004 6.86 0.143 0.1412

Weighted Non-local (Multi-Scale) 5.810 1.473 0.003 7.29 0.146 0.1435

Table 3: Effect of Weighted Non-local Block and runtime analysis.

intermediate training value columns in Tab. 2: the shape

similarity, rotation and translational score improve by 0.01,

1.4◦ and 2.3 metres respectively. By connecting the trans-

lation head with intermediate RoIAlign branch, the trans-

lational losses are jointly back propagated with the losses

from the sub-categorisation and rotation. The improvement

of translational estimation synergistically boost the accu-

racy for shape and rotation estimation. It shows that the net-

work is able to learn the implicit information that is shared

amongst the object class, rotation and translation.

Effect of Weighted Non-local Block. The weighed non-

local block is inserted into the last layer of the ResNet to en-

code dense spatial dependencies. Fig. 4 shows that by plug-

ging in the weighted non-local block, both the rotational

and translational training losses further decrease comparing

with the previously converged model. Tab. 3 shows that the

incorporation of weighted non-local block consistently im-

proves mAP on both validation and test set with marginally

increased inference runtime.

We visualise the self-attention map A of Eqn. 4 in the

weighted non-local block in Fig. 5. The heat maps on

the right exhibit meaningful attention positions (without the

weighted operation, the heat map will exhibit extreme high

temperature with hard to interpret positions on the atten-

tion map), which demonstrates that the weighted non-local

block can learn to find meaningful relational clues regard-

less of the distance in space. In Fig. 6, we visualise the

predicted vehicles in 3D space7. When incorporated with

weighted non-local block, the model is able to capture the

spatial dependencies so that it adjusts the predictions ac-

cording to the distance and orientation of neighbouring ve-

hicles.

7We use Open3D [45] to render the triangle mesh.

Figure 4: Losses w/o & w/ weighted non-local block (NL).

5. Conclusions

We have presented 6D-VNet as an end-to-end network

for 6DoF pose estimation of vehicles from monocular RGB

images. To the best of our knowledge, the incorporation of

translation regression into the network is the first of its kind.

In addition, we design the joint losses according to solid

grounding in geometry, which are crucial to achieve accu-

rate pose estimation. Particularly, a large improvement for

position estimation is observed when the translation head is

trained from both visual clues and bounding box informa-

tion. Furthermore, we demonstrate the spatial dependen-

cies among neighbouring vehicles can be incorporated via

a weighted non-local block with interpretable self-attention

map. Our future work will include further refinement of the

estimated 6DoF pose using post-processing techniques such

as iterative closet point based algorithms [44] or iterative re-

finement network in [26].
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PD TH TV FT MS NL IM QS mAP c0 c5 APS APM APL AR1 AR10 AR100 ARS ARM ARL

" 0.037 0.125 0.042 0.072 0.042 0.076 0.016 0.091 0.128 0.072 0.133 0.245

" 0.067 0.190 0.089 0.069 0.057 0.194 0.026 0.116 0.139 0.069 0.138 0.305

" " 0.088 0.237 0.122 0.100 0.077 0.246 0.030 0.141 0.174 0.100 0.169 0.360

" " " 0.121 0.331 0.164 0.126 0.115 0.297 0.035 0.162 0.231 0.126 0.246 0.424

" " " " 0.141 0.351 0.198 0.128 0.131 0.357 0.040 0.179 0.243 0.128 0.253 0.477

" " " " " 0.144 0.352 0.199 0.131 0.133 0.360 0.040 0.187 0.249 0.131 0.261 0.481

" " " " " " 0.147 0.357 0.206 0.117 0.137 0.366 0.041 0.190 0.246 0.117 0.262 0.489

" " " " " " " 0.148 0.353 0.209 0.115 0.138 0.371 0.042 0.191 0.244 0.115 0.259 0.490

Table 4: Performance on test set in terms of mAP. c0 is the most loose criterion for evaluating AP and c5 is in the middle of criterion.

Superscript S,M,L of average precision (AP s) and average recall (ARs) represent the object sizes. Superscript number 1, 10, 100

represent the total number of detections for calculating recalls. Projective distance (PD) [6] estimation is adopted in the state-of-the-art

methods [6, 22, 32]. Triple head (TH) is the baseline 6D-VNet. Translation head is then concatenated with visual branch (TV), represented

by ⊕ operation in Fig. 3. Fine-tuning (FT) the convolutional body and detection head gives the task specific network a 3% boost in mAP.

Multi-scale testing (MS) further increases the accuracy. The incorporation of weighted non-local block (NL) improves both precision and

recall. Using ignore mask (IM) to filter 2D detection bounding box with 0.5 IoU as threshold improves the precision, however, slightly

degrades the recall. Finally, enforcing the quaternions to one hemisphere (QS) achieves the current state-of-the-art.

Figure 5: Examples of the behaviours of a weighted non-local block. These two examples are from held-out validation images. On the

left images, the starting point (pink square) represents one xi. Since we insert the weighted non-local block in res5 layer, one pink square

denotes a receptive field of pixel size 32 × 32. We position the starting points on one of the vehicles. The end points of arrows represent

xj . The 10 highest weighted arrows for each xi are visualised. The arrows clearly indicate that the weighted non-local block attends to

the neighbouring traffic participants. Note that in the second illustration, end points are able to locate neighbouring vehicles’ wheels and

rear-view mirrors which are critical clues to position and orient the vehicle. The right images are the visualisations of self-attention map

A of xi from Eqn. 4. These visualisations show how the weighted non-local block finds interpretable, relevant indications of neighbouring

vehicles to adjust the pose estimation.

Figure 6: 3D renderings of predicted vehicles with camera coordinate axis. The bottom renderings framed by silver plate represent the

results from the model with weighted non-local block. The vehicles in colour silver, green, red represent ground truth, true positive and

false positive respectively. Due to the strictly fixed 2.8-metre translation criterion, vehicles that are farther way from the cameras are more

difficult to measure. The pink arrows highlight the predictions that have been adjusted according to their neighbouring vehicles when

weighted non-local block is plugged in.
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